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Abstract: Forest biomass is a foundation for evaluating the contribution to the carbon cycle of for-
ests, and improving biomass estimation accuracy is an urgent problem to be addressed. Terrestrial 
laser scanning (TLS) enables the accurate restoration of the real 3D structure of forests and provides 
valuable information about individual trees; therefore, using TLS to accurately estimate above-
ground biomass (AGB) has become a vital technical approach. In this study, we developed individ-
ual tree AGB estimation models based on TLS-derived parameters, which are not available using 
traditional methods. The height parameters and crown parameters were extracted from the point 
cloud data of 1104 trees. Then, a stepwise regression method was used to select variables for devel-
oping the models. The results showed that the inclusion of height parameters and crown parameters 
in the model provided an additional 3.76% improvement in model estimation accuracy compared 
to a DBH-only model. The optimal linear model included the following variables: diameter at breast 
height (DBH), minimum contact height (Hcmin), standard deviation of height (Hstd), 1% height 
percentile (Hp1), crown volume above the minimum contact height (CVhcmin), and crown radius 
at the minimum contact height (CRhcmin). Comparing the performance of the models on the test 
set, the ranking is as follows: artificial neural network (ANN) model > random forest (RF) model > 
linear mixed-effects (LME) model > linear (LN) model. Our results suggest that TLS has substantial 
potential for enhancing the accuracy of individual-tree AGB estimation and can reduce the work-
load in the field and greatly improve the efficiency of estimation. In addition, the model developed 
in this paper is applicable to airborne laser scanning data and provides a novel approach for esti-
mating forest biomass at large scales. 

Keywords: TLS; AGB; crown parameters; mixed-effects model; random forest; artificial neural  
network 
 

1. Introduction 
Forest biomass is one of the basic attributes of forest ecosystems. It can be used as a 

key indicator for calculating forest carbon stocks, assessing forest health, estimating forest 
productivity, and studying climate change and material cycles [1,2]. Accurate estimation 
of forest biomass is of great significance for forest resource monitoring and forestry pro-
duction. Therefore, it is urgent to develop a high-precision biomass estimation model for 
individual trees. Traditionally, destructive sampling has been used to obtain data to de-
velop AGB models for individual trees [3–6]. However, this approach provides data re-
lated to very limited number of variables for developing models. LiDAR, as a 3D scanning 
technology, can be used to accurately restore the 3D structure of individual trees [7], and 
there is a correlation between the point cloud feature variables derived from LiDAR 
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information and the biomass of individual trees [8]. Therefore, developing biomass mod-
els based on LiDAR data has become an interesting approach to estimating the AGB of 
individual trees. 

AGB allometric growth models for individual trees generally use diameter at breast 
height (DBH) as the fundamental variable [9–11], which can be easily and quickly ob-
tained with tree calipers and mobile phones [12]. However, these simple allometric 
growth models may have been characterized by lower precision than more complex mod-
els. Thus, some researchers have added variables to allometric growth models. The crown 
structure of a tree affects its photosynthetic and assimilative capacity and the accumula-
tion of trunk biomass, making it a key variable to consider in anisotropic biomass growth 
models [13,14]. Some researchers have directly introduced the crown volume, projected 
crown area, crown width, and crown length into allometric biomass growth models [15–
21]. The results have demonstrated the potential of using crown structures to improve the 
accuracy of biomass estimation. Not the whole crown, however, contributes to trunk bio-
mass accumulation. Li [22] defines the part of the crown that plays a major role in the 
growth of the trunk as an ‘effective crown’. Zheng and Wang [23,24] et al. demonstrated 
that the effective crown structure has an important influence on estimates of individual 
tree biomass. Traditional forest investigation methods are time-consuming and labor in-
tensive; additionally, they require extensive field work and lack the ability to make de-
tailed measurements of crown structures. Thus, a challenging problem that arises in this 
context is determining how to extract crown structure information in an efficient and ac-
curate way. 

In recent decades, the rapid development of LiDAR has enriched the tools for forest 
resource investigation. LiDAR is an active remote sensing technology that provides de-
tailed 3D information for scanned objects by emitting laser energy and receiving the re-
turn signal to obtain high-precision point cloud data [25]. Airborne laser scanning (ALS) 
can be used to estimate the AGB over a large area and is more accurate than two-dimen-
sional remote sensing techniques for estimating the AGB [26,27]. One of the limitations of 
ALS is that the measured tree height tends to be slightly lower than the actual tree height 
from field measurements since laser pulses are not always reflected from the top of the 
tree; as a result, ALS cannot acquire complete information regarding the vertical distribu-
tion of the crown [28]. Terrestrial laser scanning (TLS) works in a bottom-up manner; 
therefore, it provides accurate information about the forest understory and the detailed 
vertical structure of the canopy [29,30] for forestry science research. Moreover, TLS ena-
bles the accurate and fast acquisition of the 3D parameters of standing trees in a nonde-
structive way. TLS has been applied in research involving data extraction for individual 
trees, mainly focusing on DBH, tree height, crown width, and individual tree position 
detection [31–35], and this information can be directly used to estimate the trunk curve, 
trunk volume, and 3D crown structure [36–41]. TLS has also displayed great potential for 
forest biomass estimation, and there are two ways to estimate biomass with TLS. In the 
first approach, the volume is measured with TLS data through the geometric reconstruc-
tion of standing trees; then, the biomass is calculated from the volume multiplied by the 
density of the trees [42–45]. The second approach involves developing a regression model 
to estimate biomass based on individual tree parameters or point cloud feature variables 
extracted by TLS [24,46,47]. Wang et al. [24] proposed a novel parameter, the LiDAR bio-
mass index (LBI), based on the crown structure parameters extracted with TLS and added 
the LBI to an allometric biomass growth model. They observed that the LBI-based allome-
tric biomass growth model could better predict individual tree biomass. Clearly, the 
crown contributes a major role in biomass growth [22]; however, currently, scholars focus 
on the effect of the whole crown on AGB, and few studies have discussed the role of ef-
fective crown effects on AGB. Moreover, even fewer studies have applied TLS to obtain 
effective crown information and add it to biomass prediction models. 

The selection and optimization of models is another crucial step in improving bio-
mass estimation models. Biomass models traditionally encompass mainly linear, 
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nonlinear, and mixed-effects models [11,48–50], which often require certain statistical as-
sumptions to be met in their application, such as data independence, normal distribution, 
and equal variance. Based on continuous observation and multilevel forest growth data, 
the above assumptions are rarely satisfied [51]. 

For this reason, alternative models are urgently needed. Recently, some scholars have 
started to apply random forest (RF) models and artificial neural network (ANN) models 
to estimate biomass [52–54]. RF and ANN models are nonparametric models that enable 
the more efficient approximation of arbitrary nonlinear relationships than traditional par-
ametric models do. Additionally, they have no requirement regarding data structure and 
are not limited by data covariance and heteroskedasticity issues. Previous studies [52,55] 
have demonstrated that ANN models have better potential for estimation than traditional 
allometric growth models, and RF models are mainly applied to estimate forest biomass 
at large scales [53,56]. However, to date, few researchers have explored the estimation of 
individual-tree AGB using RF models. 

To summarize, TLS as a remote sensing tool has unparalleled capabilities in obtain-
ing detailed individual tree crown structures that conventional methods do not pro-
vide. This has contributed additional information to improve the estimation accuracy of 
individual-tree AGB models. In this study, the overall objective was to develop an indi-
vidual-tree AGB estimation model based on TLS data by combining point cloud height 
parameters and crown parameters at different heights to improve the accuracy of planted 
Korean pine AGB estimation. The specific objectives were as follows: (1) to extract the 
crown parameters and height parameters from point clouds of 1104 trees, (2) to select var-
iables using stepwise regression and then develop linear (LN), linear mixed-effects (LME), 
random forest (RF), and artificial neural network (ANN) models for individual-tree AGB 
estimation, and (3) to compare and analyze the differences in AGB estimates among the 
four models and identify the most suitable model. 

2. Materials and Methods 
2.1. Study Area 

The study area is located in Mengjiagang Forest Farm, Jiamusi City, Heilongjiang 
Province, China (130°32′~130°52′ E, 46°20′~46°30′ N) (Figure 1), at the western foot of the 
Wanda Mountains. The landscape in this area is mainly low hills, and the slope is gradual, 
with an average elevation of 250 m. The area is characterized by an East Asian continental 
monsoon climate. The annual average temperature is 2.7 °C, and annual precipitation to-
tals 550–670 mm. The soil type at this forest farm is primarily typical dark brown loam. 
Artificial forests cover 2/3 of the farm area, and the remaining 1/3 is covered with natural 
secondary forests. The study area has a forest coverage of 81.7%. 
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Figure 1. Sample plots distribution map of Mengjiagang Forest Farm. 

2.2. Field Measurements 
In April 2020, we investigated 21 planted Korean pine plots (Table 1) at the 

Mengjiagang forest farm (Figure 1), each with different stand qualities, ages, and densi-
ties. All plots except plot 7 and 9 (0.09 ha) had an area of 0.06 ha. The center point coordi-
nates of the plots were recorded using a GPS (GPSmap 621sc, GARMIN), and positioning 
accuracy was 3 m. Per-tree measurements were obtained for tree height, DBH, crown 
width, and first live branch height. An altimeter (Vertex IV, Haglöf Sweden, Sweden) was 
used to measure the trees’ height, a diameter tape was used to measure DBH, and a steel 
tape was used to measure crown width.  

Jenkins et al. [57] noted that published biomass equations are available for the large-
scale estimation of AGB. Therefore, our AGB reference values are calculated from Dong’s 
equation [58]. 

AGB = 0.2064 × DBH2.1169 (1)

Table 1. Sample plots information. 

Plots 
DBH (cm) TH (m) CW (m) HB (m) 

Mean Age (a) Area (hm²) Density (N·hm−2) 
Mean std Mean std Mean std Mean std 

1 25.3 2.32 14.6 2.53 5.7 0.68 6.2 1.35 51 0.06 517 
2 23.8 3.57 14.8 2.14 5.1 0.94 7.3 1.57 50 0.06 700 
3 21.5 2.78 13.3 1.88 4.4 0.97 5.9 1.25 47 0.06 800 
4 25.2 3.65 15.4 1.04 4.7 0.84 5.9 1.15 57 0.06 567 
5 26.8 3.88 14.4 1.02 5.6 0.92 4.5 1.13 47 0.06 500 
6 19.5 4.65 16.8 1.96 3.4 1.09 7.9 2.01 56 0.06 1200 
7 21.9 3.93 17.9 2.31 3.8 1.00 9.2 2.04 54 0.09 1078 
8 17.6 4.05 12.0 1.50 3.4 0.96 5.4 1.31 48 0.06 1367 
9 23.4 3.14 13.7 0.87 4.2 0.82 5.8 0.82 50 0.09 844 

10 22.9 3.95 14.2 1.34 4.5 0.99 7.0 0.89 49 0.06 883 
11 19.6 2.17 12.2 0.94 4.5 0.61 5.6 0.73 47 0.06 1167 
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12 19.6 2.41 13.9 1.50 4.1 0.65 8.3 1.09 42 0.06 1167 
13 23.9 3.03 13.3 2.65 4.8 0.67 5.5 1.91 44 0.06 583 
14 23.5 4.89 13.0 2.27 4.7 0.66 5.7 1.18 44 0.06 683 
15 27.5 2.84 16.1 1.72 6.6 0.99 6.2 2.83 44 0.06 433 
16 22.7 2.81 13.9 1.02 4.2 0.78 7.5 0.83 43 0.06 767 
17 22.6 3.26 15.3 1.53 5.2 0.77 7.8 1.22 44 0.06 733 
18 21.4 3.45 14.4 1.93 4.3 0.75 7.1 1.21 44 0.06 833 
19 23.2 3.61 13.5 0.91 4.5 0.91 6.1 0.66 44 0.06 717 
20 21.9 2.22 14.2 1.21 5.1 0.72 5.8 0.81 46 0.06 1000 
21 22.8 2.75 13.8 1.09 4.7 0.88 5.6 1.03 45 0.06 900 

2.3. Collecting TLS Data 
We obtained the point cloud data for 21 plots with a Trimble TX8 (Trimble, CA, USA). 

To ensure the comprehensiveness of the point cloud information for all trees in the plots, 
we performed scans with five stations in each plot. For more detail, one station was placed 
at the center of the plot and the scanning time set to 10 min. Four stations were placed at 
each of the four corners of the plot, and the scanning time was set to 3 min. Figure 2 depicts 
the details of the scanned plots. 

 
Figure 2. Picture of the TLS scan sample plots. 

The point cloud data from multiple sites were input into Trimble RealWorks 11.2 
(Trimble, CA, USA) software, and the target spheres were used as the marker for point 
cloud coregistration for each plot. Finally, the collocated point clouds were output in .las 
format. The point cloud density of each sample plot ranged from 20,000 points/m² to 
40,000 points/m². More detailed processing was performed in LiDAR360 (Beijing Digital 
Green soil Technology Co., Ltd., Beijing, China) software. These processing tasks were as 
follows: point cloud cropping at the plot scale, point cloud resampling, denoising, point 
cloud data normalization, individual tree segmentation, and individual tree matching. Fi-
nally, we obtained the point cloud data of 1104 trees and divided them randomly into 
training and testing datasets in the ratio of 4:1. The specific process details of this study 
are shown in Figure 3. 
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Figure 3. Flow chart of this study. 

2.4. Variable Extraction 
Both the waveform and point cloud data from TLS can visually and quantitatively 

reflect the vertical structure of forest stands. A more general approach toward estimating 
biomass is to develop regression relationships between variables such as point cloud 
height and field-measured stand height for large-scale extrapolation [59,60]. In this study, 
we extracted the height parameters from the normalized point cloud data for individual 
trees. Notably, data were obtained for parameters such as height percentile (Hp), mean 
height (Hmean), standard deviation of height (Hstd), variance of height (Hvar), median 
of height (Hmed), coefficient of variation of height (Hcv), interquartile spacing of height 
(Hiq), and skewness of height (Hskew). DBH, tree height, and crown width (CW) were 
also among the extracted variables. In addition, we extracted the first live branch height 
(HB), minimum contact height (Hcmin), maximum contact height (Hcmax), and height of 
crowns’ maximum width (Hcw) from the point clouds of individual trees based on a vis-
ual interpretation process (Figure 4). Moreover, the mean contact height (Hcmean), crown 
length (CL), crown length above the minimum contact height (CLhcmin), crown length 
above the maximum contact height (CLhcmax), crown length above the point of the max-
imum crown width (CLcw), and crown length ratio (CLr) were indirectly calculated with 
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the above variables. A classification of the variables is given in Table 2, and a more de-
tailed interpretation of the variables is provided in Table A1. 

Table 2. List of variables extracted from TLS data. 

Items. Variables Description 

Crown pa-
rameters 

CL, CLr, CLcw, CLrcw, CLhcmin, CLrhcmin, 
CLhcmean, CLrhcmean, CLhcmax, Clrhcmax 

Crown length and crown length ratio 
above different heights 

CVcw, CScw, CVhcmin, CShcmin, 
CVhcmean, CShcmean, CVhcmax, CShcmax 

Crown volume and surface area above 
different heights  

CW, CRhcmin, CRhcmean, CRhcmax Crown radius at different heights 

Height pa-
rameters 

HB, Hcw, Hcmin, Hcmean, Hcmax Heights that can be measured directly 
Hp1, Hp5, Hp10, Hp20, Hp25, Hp30, Hp40, 

Hp50, Hp60, Hp70, Hp75, Hp80, Hp90, Hp95, 
Hp99, 

Hmax, Hmean, Hmin, Hmed, Hstd, Hvar, 
Hcv, Hskew, Hiq 

Height metrics derived from normalized 
point cloud data 

 
Figure 4. Illustration of extracted variables. H is tree height, Hcmin is the minimum contact height, 
Hcmax is the maximum contact height, HB is the first living branch height, Hcw is the height of the 
maximum crown width, CLhcmin is the crown length above the minimum contact height, CLhcmax 
is the crown length above the maximum contact height, CL is crown length, and CLhcw is the crown 
length above the height of the maximum crown width. 

Crown structures above different contact heights can affect the AGB estimates for 
individual trees [23]. We extracted crown parameters for individual trees above different 
heights, such as the crown volume, crown surface area, and maximum crown radius 
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above different contact heights. All crown parameters were extracted automatically in 
MATLAB R2020b (MathWorks, Natick, Massachusetts, USA) software. Notably, we auto-
matically cropped the required crown point cloud (Figure 5b) according to the different 
height values and then applied the alpha-shape algorithm to reconstruct the crown sur-
face (Figure 5c) and obtain the crown volume and surface area. The alpha-shape algo-
rithm, first proposed by Edelsbrunner [61,62], is a classic edge detection algorithm that 
can be used to enhance or blur boundaries through parameter adjustments. Additionally, 
we performed a 2-D projection of the crown point cloud and applied the convex hull al-
gorithm [63] to calculate the boundary points of the crown projection, which was useful 
for calculating the maximum crown radius at different heights (Figure 5d). 

 
Figure 5. Detailed process of crown parameter extraction above different heights; (a) is the complete 
point cloud for an individual Korean pine, (b) is the crown point cloud above the minimum contact 
height, (c) is the crown above the minimum contact height reconstructed with the alpha-shape 
algorithm, and (d) is the crown projection used to calculate the maximum crown radius. 

2.5. Model Development 
2.5.1. Linear Model 

When establishing AGB equations based on the obtained TLS data, we used height 
parameters and crown parameters as independent variables and AGB calculated from 
field measurements as the dependent variable and selected the optimal explanatory vari-
ables in stepwise regression [64,65]. Four LN models were considered: one with DBH as 
the only independent variable (model 1); one with DBH and height parameters as inde-
pendent variables (model 2); one with DBH and crown parameters as independent varia-
bles (model 3); and one in which all the extracted parameters were used as independent 
variables (model 4). SAS 9.4 (SAS Campus Drive, Cary, North Carolina, USA.) software 
was used to run stepwise regressions. F tests were performed after each independent var-
iable was introduced, and t tests were performed on each of the previously selected 
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independent variables (t value was set to 0.05 in this study). Additionally, independent 
variables with variance inflation factors (VIF) greater than 10 were removed to limit the 
effect of independent variable collinearity on the modeling results.  

2.5.2. Mixed-Effects Model 
The mixed-effects model is suitable for studying the relationship between dependent 

and independent variables in grouped data, and its strong point is the flexibility in ac-
counting for both the average trend in overall variations and the differences among indi-
viduals [66]. Our data were obtained from 1104 trees in 21 different plots and are very 
suitable for developing a mixed-effects model that can account for not only the average 
trends in individual-tree AGB across the study area but also the differences in individual-
tree AGB among different plots with random effects. This approach can significantly en-
hance the accuracy of subsequent prediction models. An LME model of AGB at the plot 
level was developed based on the optimal LN model developed in Section 2.5.1. The LME 
model can be expressed as follows:  𝑊௜௝ = 𝐴௜௝𝜒 + 𝐵௜௝𝛽௜ + 𝜀௜௝ , 𝑖 = 1,···,𝑀, 𝑗 = 1,···,𝑛௜ (2)

where  𝑊௜௝ is the observed AGB of the 𝑗-th individual tree in the 𝑖-th plot, 𝜀௜௝ is the model 
error term, 𝑀 is the number of plots, 𝑛௜ is the number of trees in each plot, 𝐴௜௝ and 𝐵௜௝ are 
known design matrices, 𝛽௜ is random-effects vector, and 𝜒 is fixed-effects vector. Model 
fitting was achieved with the ‘nlme’ package (https://cran.r-project.org/package=nlme, ac-
cessed on 10 January 2023) in R software. 

2.5.3. Random Forest Model 
A random forest (RF) is an integrated algorithm with a decision tree as the base 

learner [67]. In regression problems, RF models output a weighted average of the results 
obtained from all decision tree predictions as the final result [68]. In this study, an RF 
algorithm was applied to develop an individual-tree AGB estimation model with the se-
lected optimal variables as inputs. We performed an automatic optimization search for 
the four hyperparameters considered most important in the RF algorithm: the number of 
decision trees (n_estimators), the minimum split sample size (min_samples_split), the 
minimum sample number of leaf nodes (min_samples_leaf), and the maximum number 
of separating features (max_features). Moreover, to avoid overfitting the trained model, 
the out-of-bag (OOB) error rate was used to verify the generalization ability of the model. 

2.5.4. Artificial Neural Network Model 
An artificial neural network (ANN) is a multilayered network consisting of several 

basic units connected by certain rules. In this study, an ANN model was developed with 
the Kears [69] deep learning framework to estimate the individual-tree AGB. We selected 
a 4-layer ANN with full connectivity between layers; the input layer included the filtered 
optimal variables, the middle two layers were hidden layers, and the output layer was the 
AGB of individual trees. The mean square error (MSE) was considered in the loss function. 
Rectified linear units (ReLUs) were applied in the activation function because the sigmoid 
function is influenced by extensive saturation, making gradient-based learning difficult; 
however, ReLUs display nearly linear behavior, leading to enhanced optimization and 
performance in most cases [70,71]. Moreover, to prevent overfitting, we applied an early 
termination strategy and set the maximum number of iterations in the model to 3000. 
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2.6. Model Evaluation 
We evaluated the fitting and predictive abilities of the model based on independent 

test data with the coefficient of determination (R²), the absolute value of the mean relative 
error (RMAE), the root mean square error (RMSE), and the mean absolute error (MAE): 𝑅ଶ = 1 − ቈ∑ ሺ𝑦௜ − 𝑦ො௜ሻଶ௡௜ୀଵ∑ ሺ𝑦௜ − 𝑦ത௜ሻଶ௡௜ୀଵ ቉ (3)

𝑅𝑀𝑆𝐸 = ඨ∑ ሺ𝑦௜ − 𝑦ො௜ሻଶ௡௜ୀଵ 𝑛  (4)

𝑀𝐴𝐸 = ෍ฬ𝑦௜ − 𝑦ො௜𝑛 ฬ௡
௜ୀଵ  (5)

𝑅𝑀𝐴𝐸 = 1𝑛෍ฬ𝑦௜ − 𝑦ො௜𝑦௜ ฬ௡
௜ୀଵ × 100％ (6)

where 𝑦௜ is the observed value, 𝑦ො௜ is the predicted value, 𝑛 is the number of samples, and 𝑦ത௜ is the average of all the observed values. 

3. Results 
3.1. Linear Model of Individual-Tree AGB Based on TLS-Derived Parameters 

The variables finally selected for each LN model and the coefficients of the variables 
are shown in Table 3. With DBH as the only independent variable in the model 1, it yields 
a lowest R² for the test set. For the case with DBH and point cloud height parameters 
(model 2), DBH, Hp50, Hiq, and Hcmin were the final independent variables selected, and 
the R² of model 2 is improved relative to model 1. For the case with DBH and crown struc-
ture parameters (model 3), DBH, CL, CLrhcmin, and Cscmin were selected as the inde-
pendent variables, and model 3 produces the same results as model 2. In the fourth case, 
DBH, Hcmin, Cvcmin, Hstd, Crhcmin, and Hp1 were the selected variables (model 4), and 
model 4 performed best based on the test set. With detailed analysis, the independent 
variables of model 4 included not only crown structure parameters describing canopy in-
formation but also height parameters reflecting crown height information, which can bet-
ter explain the changes in individual-tree AGB and be more accurately used to estimate 
individual-tree AGB than can other variables. Therefore, we finally chose model 4 as the 
optimal LN model for estimating individual-tree AGB. 

Table 3. Fitting results of linear models based on different variables. 

Variables Fitting Results 
Training Sets Test Sets 
R² RMSE(kg) R² RMSE(kg) 

DBH AGB = 17.33DBH-210.39 (model 1) 0.905 20.688 0.901 21.311 
DBH+ height parame-

ters 
AGB = 17.15DBH + 6.93Hp50 + 3.98Hiq + 2.82Hcmin-305.08 

(model 2) 
0.927 17.893 0.916 18.562 

DBH+ crown parame-
ters 

AGB = 16.07DBH + 8.37CL-138.59Clrhcmin + 0.18Cscmin-199.67 
(model 3) 

0.913 19.379 0.905 19.991 

All variables 
AGB = 15.82DBH + 5.78Hcmin + 0.24Cvcmin + 20.95Hstd-

6.55Crhcmin + 4.76Hp1-290.71 (model 4) 
0.939 16.883 0.932 17.165 

3.2. Mixed-Effects Model for Individual-Tree AGB Based on TLS-Derived Parameters 
Different combinations of random-effect parameter forms in model 4 were fitted us-

ing the ‘nlme’ package in R software. We selected the best random parameter combination 
form by comparing the fitness of each model considering the corresponding AIC, BIC, log 
likelihood, and R² values. We also performed a likelihood ratio test (LRT) to avoid the 
problem of overparameterization. Significance tests were applied in this study and 
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verified significant differences among the models when p < 0.05, as shown in Table 4 for 
the fitting results. 

Based on the results in Table 4, with the addition of random effects, the AIC and BIC 
of the model decreased compared to those of the LN model, and both the R² and log like-
lihood values improved, which indicates that the LME model provides a better fit. The 
model 4–3 with random effects for a0, a1, and a3 yielded the minimum AIC and BIC, and 
both the log likelihood and R² values of this model were maximums. The LRT results in-
dicated significant differences among the models. Therefore, we finally selected model 4–
3 as the optimal LME model for individual-tree AGB.  

Table 4. Fitting accuracy of the linear mixed-effects model based on different combinations of ran-
dom-effect parameters. 

Model Random Effects 
Parameters 

Number of 
Parameters 

R² AIC BIC Log Likeli-
hood 

LRT p 

model 4 None 7 0.939 3702.329 3734.932 −1843.17   

model 4–1 a3 9 0.948 3681.301 3717.812 −1831.65 36.545 <0.001 
model 4–2 a0, a1 11 0.958 3621.794 3677.389 −1799.90 63.506 <0.001 
model 4–3 a0, a1, a3 14 0.960 3620.594 3666.419 −1790.22 10.199 0.035 

Note: a0, a1, a3 represent the coefficients of the respective variables in model 4. 

Table 5 shows the detailed results for each parameter in the optimal LN model and 
LME model for individual-tree AGB as well as the corresponding fitting statistics. AR (1) 
is the optimal matrix for describing the autocorrelation structure in the LME model. 

Table 5. Fitting results for the optimal linear model and linear mixed-effects models. 

Terms Parameters Linear Model Linear Mixed-Effects Model 

Fixed-effect parameters 

a0 −290.712 −288.147 
a1 15.822 15.987 
a2 5.786 3.810 
a3 0.242 0.254 
a4 20.956 21.565 
a5 −6.553 −8.915 
a6 4.762 5.767 

Random-effects variance-covariance 
structure 

σ²  14.570 
σa0

2   64.810 
σa1

2   −0.993 
σa3

2   −0.615 
σa0a1

2   3.288 
σa0a3

2   0.113 
σa1a3

2   0.531 
Parameters of the autocorrelation ma-

trix AR (1) 
  ρ = 0.153 

Fitting statistics 
R² 0.939 0.961 

RMSE 16.883 16.705 

3.3. Random Forest Model for Individual-Tree AGB Based on TLS-Derived Parameters 
3.3.1. Optimal Hyperparameters 

Figure 6a shows the effect of n_estimators on the OOB error; notably, the model 
yields the minimum OOB error when n_estimators is equal to 390. The effects of min_sam-
ples_split, min_samples_leaf, and max_features on the OOB error are shown in Figure 6b–
d, respectively. Finally, the optimal hyperparameters of the RF model are chosen as n_es-
timators = 390, min_samples_split = 2, min_samples_leaf = 1, and max_features = 4. 
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Figure 6. Graph of the OOB error for the RF model with different hyperparameter combinations. 
(a) none, (b) min_samples_split, (c) min_samples_leaf, (d) max_features. 

3.3.2. Relative Importance and Partial Dependence 
The RF model can be used to determine the relative importance of the independent 

variables and to produce a partial dependence plot for the dependent variable [67] driven 
by the independent variables, which are crucial elements in enhancing the interpretability 
of RF results. Partial dependence plots aid in visualizing the dependence of the outcome 
on the independent variables. One point worth emphasizing is that we cannot ignore the 
effects of other variables on the dependent variable when calculating dependence and 
instead should consider the average effect of all variables on the dependent variable. 

Figure 7 illustrates the relative importance of the effects of each independent variable 
on the individual-tree AGB. It is obvious that DBH is the primary factor influencing AGB, 
with a relative importance of 66.47%. Height parameters and crown structure parameters 
also have some effect on individual-tree AGB, with a total relative importance of 33.53%. 
The relative importance of each variable in relation to individual-tree AGB is ranked as 
follows: DBH > Hcmin > Hstd > Cvcmin > Crhcmin > Hp1. 

 
Figure 7. Relative importance of each independent variable in the RF model. 

The partial dependence of individual-tree AGB on each independent variable is 
plotted in Figure 8. There was a strong dependence between individual-tree AGB and 



Forests 2023, 14, 351 13 of 21 
 

 

DBH, as also observed for the relative importance of variables in Figure 7. Hcmin, Hstd, 
and Cvcmin also display dependence relations with individual-tree AGB. Additionally, 
for Crhcmin and Hp1, only very weak dependence relations with AGB are observed, as 
shown in Figure 8. 

 
Figure 8. Partial dependence plots of each independent variable affecting individual-tree AGB 
change. (a) DBH, (b) Hcmin, (c) CRhcmin, (d) CVcmin, (e) Hp1, (f) Hstd.  

3.4. Artificial Neural Network model for Individual-Tree AGB Based on TLS-Derived 
Parameters 

The ANN model was built with the variables DBH, Hcmin, Cvcmin, Hstd, Crhcmin, 
and Hp1 in the input layer. The variable in the output layer was the individual-tree AGB, 
the number of neurons in each hidden layer was set to 64, and the layers were fully con-
nected to each other. Other parameters of the model were set as follows: initial learning 
rate was 0.001, dropout was 0.02, batch size was 32, and maximum number of iterations 
was 3000. The iterative process of fitting the ANN model is illustrated in Figure 9. Nota-
bly, the fitting effect of the model for the training set is not much different than that for 
the test set, which suggests that no overfitting occurs. Additionally, the model achieves 
the optimal fitting effect at epoch 2369. The ANN model yields an R² of 0.969 and an RMSE 
of 16.161 kg for the training set and an R² of 0.952 and an RMSE of 15.897 kg for the test 
set. 

 
Figure 9. Iterative process of the ANN model. 
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3.5. Model Comparison 
Table 6 shows the fitting results of each model for the training set and the prediction 

results for the independent test set. It is obvious that the evaluation indexes of the models 
do not differ significantly for different data sets, which suggests that none of the models 
are influenced by overfitting. All models provide acceptable prediction ability, with R² 
values above 0.932 and RMSEs below 17.165 kg. The ANN model provides the best pre-
diction ability. Compared with the other three models, the ANN model yields R² improve-
ments of 2.15%, 0.95%, and 0.74%, the RMSE is reduced by 5.06%, 3.55%, and 2.77%, and 
the MAE is reduced by 6.58%, 4.31%, and 0.45%, respectively. The predictive accuracy of 
each model can be ranked as follows: ANN model > RF model > LME model > LN model. 

Table 6. Fitting and prediction abilities of the optimal models. 

Model Data sets R² RMSE/kg MAE/kg RMAE/% 

LN model 
Training set 0.939 16.883 13.012 8.762 

Test set 0.932 17.165 13.085 8.997 

LME model 
Training set 0.961 16.705 11.863 7.653 

Test set 0.943 16.897 12.775 8.198 

RF model 
Training set 0.972 16.021 11.699 6.159 

Test set 0.945 16.762 12.279 7.745 

ANN model 
Training set 0.969 16.161 11.731 7.278 

Test set 0.952 16.297 12.224 7.562 

4. Discussion 
Information about tree crowns above different contact heights was extracted in this 

study from TLS, and such information is generally not provided by traditional methods. 
After analysis, we concluded that adding crown information above different contact 
heights to an individual-tree AGB model can improve the estimation accuracy of the 
model, which is consistent with the results of Zheng et al. [23]. One limitation is that in 
this paper, a visual interpretation method was applied to extract the crown contact height; 
therefore, determining how to automatically extract the contact heights of different indi-
vidual trees is an urgent problem that must be addressed in future research. We applied 
the 3D alpha-shape algorithm to reconstruct the crown above different contact heights, 
and the parameters were adjusted to make the crown boundary more detailed and unaf-
fected by the point cloud density inside the crown. Therefore, the crown volume extracted 
using the 3D alpha-shape algorithm was closer to the true value [72] than the extraction 
results obtained would be with the convex-hull algorithm [73,74] or fixed-size voxel 
method [75,76]. 

The waveform or point cloud data from TLS can visually and quantitatively reflect 
the vertical structure of the forest community. A more general approach to estimating 
AGB is to establish regression relationships between variables such as the height of point 
clouds and the field-measured forest community height for large-scale extrapolation 
[68,77], and few studies have reported AGB estimates at the individual-tree scale based 
on the height parameters from point clouds. We extracted the height parameters from the 
normalized point cloud data for individual trees and revealed that they can be considered 
independent variables in individual-tree AGB prediction models after a stepwise regres-
sion method is applied to select variables. Our results show that TLS can provide valuable 
variable information for developing individual-tree AGB models without destroying trees 
as a way to improve the accuracy of individual-tree AGB estimates. Consequently, a valid 
proposal is that in future research, we should fully utilize the nondestructive data acqui-
sition capability of TLS to provide additional valuable information for the development 
of forest biomass and carbon stock prediction models as a way to strengthen the predic-
tions of forest biomass and carbon stock models. 
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In some recent studies, individual-tree AGB models have been developed with TLS-
derived parameters [46,78–80], and these authors concluded that considering crown pa-
rameters and height parameters can improve the accuracy of individual-tree AGB estima-
tion. In this paper, we developed four individual-tree AGB LN models using the param-
eters derived from TLS (Table 3). The results showed that: the models incorporating 
height parameters (model 2) or crown parameters (model 3) performed better than those 
with only DBH as the independent variable (model 1); the models incorporating height 
parameters (model 2) offered better predictions than those incorporating crown parame-
ters (model 3); and the highest prediction accuracy was achieved when both height pa-
rameters and crown parameters were included in the model (model 4), in accordance with 
the results of previous research. However, the crown parameters included in the individ-
ual-tree AGB models of other researchers were typically crown volume [78], crown sur-
face area [46], and crown diameter, which are all from the whole crown [79,80]. In contrast, 
the crown parameters included in the optimal individual-tree AGB LN model (model 4) 
developed in our study are Cvcmin and Crhcmin, representing the crown information 
above the minimum contact height. Zheng et al. [23] reported a strong correlation between 
larch crown parameters above the minimum contact height and individual-tree AGB. 
Wang et al. [24] proposed a new physical parameter, the LBI, and obtained robust indi-
vidual-tree AGB estimates by combining the LBI with the traditional allometric growth 
equation. It is worth emphasizing that the LBI includes crown information above different 
contact heights. The results of all of these works suggest that considering crown infor-
mation above different contact heights contributes to improving estimates of individual-
tree AGB, and therefore, developing AGB models based on crown information above the 
contact height of individual trees is certainly scientifically reasonable. In addition, ALS 
takes a top-down approach, which is less capable of acquiring information from the lower 
part of the canopy, while it can accurately acquire information from the upper part of the 
canopy [81]. Thus, the individual-tree AGB prediction model we developed that includes 
crown information above the minimum contact height is also applicable to ALS data, and 
our model provides a novel approach to estimating individual-tree AGB at large scales 
using ALS. 

Different models could have a certain impact on the prediction accuracy of individ-
ual-tree AGB. Parametric models are commonly used in traditional approaches for indi-
vidual-tree AGB prediction [11,48,50], and they can clearly and intuitively reflect the rela-
tionship between AGB and each independent variable; however, parametric models are 
usually not highly accurate. Scholars have applied machine learning methods in conjunc-
tion with individual-tree AGB models [52,53] and developed nonparametric models for 
estimating individual-tree AGB, such models include RF and ANN models, among others. 
The use of nonparametric models can improve the accuracy of AGB prediction to some 
extent; nevertheless, it is difficult to explain the relationship between independent varia-
bles and AGB. In this paper, we compared the estimation of individual-tree AGB based 
on parametric models (LN and LME models) and nonparametric models (RF and ANN 
models). The 1:1 scatter plot of the predicted and measured values of individual-tree AGB 
(Figure 10) clearly displays the results, with the predictive ability of each model ranked 
as follows: ANN model > RF model > LME model > LN model. The LN model, as the most 
commonly applied biomass prediction model, is simple and can be used to efficiently de-
termine the extent to which AGB is influenced by the relevant independent variables. The 
average trend of the overall individual-tree AGB within a region can be inferred using an 
LN model, but the differences among separate small areas within a region are ignored, 
and the prediction accuracy is often limited. The LME model is divided into two parts: 
fixed effects and random effects [66]. Fixed effects can describe the average trend of over-
all individual-tree AGB in the region, while random effects can complement the descrip-
tion of the differences in individual-tree AGB among various small areas in the region, 
making the LME model very flexible and providing comparatively accurate predictions 
of individual-tree AGB. There are also drawbacks to the LME model; notably, the random-
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effects parameters and variance structure must be properly set. Consequently, the model 
is computationally complex and not easy to apply in practical cases. RF and ANN models, 
as two of the currently popular nonparametric models available, have been relatively well 
established for forestry applications [52,53,55,56]. Based on the comparison, we can con-
clude that these two nonparametric models have improved the accuracy of individual-
tree AGB prediction more than have traditional parametric models. Moreover, nonpara-
metric models have simple data structure requirements, and the algorithms are flexible 
and efficient, making them ideal for practical applications. The ANN model yielded the 
highest accuracy in individual-tree AGB prediction in this study, followed by the RF 
model. However, the ANN model is based on a ‘black box’ operation when making indi-
vidual-tree AGB predictions, and the prediction process cannot be clearly visualized; 
therefore, we cannot fully assess the accuracy of the prediction results. Although the RF 
model produces lower prediction accuracy than the ANN model, the RF results are much 
more interpretable. Specifically, relative importance plots and partial dependence plots of 
the independent variables can be easily produced. Therefore, overall, we recommend the 
RF model as the optimal individual-tree AGB prediction model for practical applications. 

 
Figure 10.  1:1 scatter plots of estimated and measured values of individual-tree AGB for different 
models. (a) LN model, (b) LME model, (c) RF model, (d) ANN model. 

5. Conclusions 
TLS is playing an ever more critical role in forestry applications as an active remote 

sensing technology. In this paper, we show that TLS can be used to accurately estimate 
individual-tree AGB. We extracted height parameters and crown structure parameters at 
different heights from the point clouds of 1104 planted Korean pine and introduced these 
variables into an individual-tree AGB estimation model. The results showed that the pre-
dictive ability of the model was improved with this approach, especially by adding the 
crown structure parameters above the minimum contact height. This finding verifies that 
the crown above the minimum contact height is an important factor in individual-tree 
AGB estimation, and it may be related to the effective crown. In addition, TLS is used to 
obtain crown structure parameters and is nondestructive, precise, and repeatable; there-
fore, it can be considered in future research to monitor plots over multiple periods and 
achieve the dynamic monitoring of forest biomass and carbon stock changes. 
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Finally, we compared the ability of the LN, LME, RF, and ANN models to estimate 
individual-tree AGB. Overall, the predictive ability of the models was ranked as follows: 
ANN model > RF model > mixed-effects model > linear model. This result demonstrated 
that the nonparametric models performed better than the other models in individual-tree 
AGB prediction. Nonparametric models are based on flexible algorithms and have no data 
structure requirements; thus, they are widely used in forestry. In this paper, both ANN 
and RF models yielded accurate estimates of individual-tree AGB. The ANN model uses 
a ‘black box’ operation in the prediction process, but the RF model provides more inter-
pretable results; therefore, we recommend the RF model as the optimal model for estimat-
ing individual-tree AGB. 
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Appendix A 

Table A1. Detailed interpretation of the crown parameters. 

Variables Interpretation 
CL Crown length 
CLr Crown ratio (CL/H) 
CLcw The length of crown above the height where maximum crown width is measured 
CLrcw The ratio of crown above the height where maximum crown width is measured (CLcw/H) 
CLhcmin The length of crown above the minimum height of the target crown contact with the adjacent crown    
CLrhcmin The ratio of crown above the minimum height of the target crown contact with the adjacent crown (CLhcmin/H) 
CLhcmean The length of crown above the mean height of the target crown contact with the adjacent crown 
CLrhcmean The ratio of crown above the mean height of the target crown contact with the adjacent crown (CLhcmean/H) 
CLhcmax The length of crown above the maximum height of the target crown contact with the adjacent crown 
CLrhcmax The ratio of crown above the maximum height of the target crown contact with the adjacent crown (CLhcmax/H)    
CVcw The volume of crown above the height where maximum crown width is measured 
CScw The surface area of crown above the height where maximum crown width is measured 
CVhcmin The volume of crown above the minimum height of the target crown contact with the adjacent crown 
CShcmin The surface area of crown above the minimum height of the target crown contact with the adjacent crown 
CVhcmean The volume of crown above the mean height of the target crown contact with the adjacent crown 
CShcmean The surface area of crown above the mean height of the target crown contact with the adjacent crown 
CVhcmax The volume of crown above the maximum height of the target crown contact with the adjacent crown 
CShcmax The surface area of crown above the maximum height of the target crown contact with the adjacent crown 
CW Maximum crown width 
CRhcmin Crown radius at minimum height of the target crown contact with the adjacent crown 
CRhcmean Crown radius at mean height of the target crown contact with the adjacent crown 
CRhcmax Crown radius at maximum height of the target crown contact with the adjacent crown 
HB Height of first live branch 
Hcw Height where the maximum crown width is measured 
Hcmin Minimum height of the target crown contact with the adjacent crown 
Hcmean Mean height of the target crown contact with the adjacent crown 
Hcmax maximum height of the target crown contact with the adjacent crown 
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Hp1~Hp99 
Percentile of height in normalized point cloud 
(1%,5%,10%,20%,25%,30%,40%,50%,60%,70%,75%,80%,90%,95%,99%) 

Hmax Maximum value of height in the normalized point cloud 
Hmean Mean value of height in the normalized point cloud 
Hmin Maximum value of height in the normalized point cloud 
Hmed Median of height in the normalized point cloud 
Hstd Standard deviation of height in the normalized point cloud 
Hvar Variance of height in the normalized point cloud 
Hcv Coefficients of variation of height in the normalized point cloud 
Hskew Skewness of height in the normalized point cloud 
Hiq Interquartile spacing of height percentile in the normalized point cloud 
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